8 Aprile 2025

The transformative impact of AI and generative AI on OSS and BSS in telecommunications

As telecommunications operators grapple with exponential growth in data usage and the demands of modern consumers, the role of operations support systems (OSS) and business support systems (BSS) is being reimagined to address these pressures. Once defined by siloed architectures and manual processes, core systems are now evolving into intelligence-driven platforms—bolstered by AI, generative AI, and, increasingly, agentic AI capable of proactive, autonomous operations. Realizing this future depends on a fundamental prerequisite: fully consolidating the telecom data estate.

A woman in a suit sitting at a table with a man in a suit

What are OSS and BSS?

Learn how to streamline processes and drive growth

Modernizing OSS and BSS: From reactive to agentic AI

OSS and BSS have long been the operational and commercial backbone of telecoms. Generally speaking, OSS manages network operations—provisioning, inventory, and fault detection—while BSS handles transactional functions like billing and customer management. Traditionally, these environments have remained fragmented, hindering a unified view spanning the customer, the network, and the business.

Thanks to advances in data management, AI and generative AI, these systems can now move beyond reactive troubleshooting to automated, predictive, and—even more significantly—agentic solutions, in which AI autonomously orchestrates tasks end-to-end. Whether it’s proactively responding to service degradations or autonomously managing resolving customer issues, agentic AI promises unprecedented cost mitigation, efficiency, and agility. 

However, effectively harnessing the proactive benefits of agentic AI requires telecom providers to establish a unified source of data truth through seamless data accessibility, rather than trying to consolidate all data onto a single platform. By enabling unified access to network, operational, and business data through a singular data catalog—such as Microsoft Fabric, which utilizes shortcuts and mirroring—telecoms ensure AI-powered insights are accurate and comprehensive. Without cohesive access to high-quality data, AI-powered insights risk becoming fragmented or misleading, limiting the transformative potential of autonomous decision-making and potentially leading to inaccurate, risky decisions. 

The critical importance of data accessibility and cohesion is exemplified by AT&T’s migration to Azure Databricks, highlighting tangible benefits: 

  1. Unified data access and operational visibility: Instead of traditional consolidation, unified data access through platforms like Microsoft Fabric provides comprehensive context, enabling AI algorithms to generate precise, actionable insights. AT&T’s migration to Azure Databricks illustrates how improving accessibility to quality data across silos empowers technical staff, enhances analytical capabilities, and improves decision-making accuracy—dramatically reducing the risk of overlooking critical dependencies or making suboptimal decisions.
  2. It enables closed-loop intelligence: Agentic AI extends beyond merely analyzing data; it proactively acts in near real-time. A cohesive data access approach, like the one implemented by AT&T, facilitates rapid anomaly detection and automated corrective actions within network and revenue systems. This closed-loop intelligence is crucial for next-generation AIOps, enabling seamless and automated responses across the entire telecom infrastructure. 
  3. It accelerates new revenue opportunities: Providing cohesive access to operational and business data creates agile, scalable monetization pathways. AT&T’s adoption of Azure Databricks accelerated its ability to launch new services by automating complex data processing and analytics tasks. Similarly, telecoms leveraging unified data access solutions can rapidly provision and monetize services such as customized 5G and 6G experiences or on-demand network slicing—shifting from manual processes to dynamic, programmable offerings.

A modern, agentic, cloud-native OSS and BSS environment built on public cloud principles doesn’t just serve the operator; it also creates a frictionless platform for third-party and ecosystem partners to plug in. Whether it’s Internet of Things (IoT) device vendors, over-the-top content providers, or enterprise service integrators, cloud-native OSS with open APIs allows rapid partner onboarding and co-creation. In turn, operators can easily expand their portfolio with new revenue streams—bolstering the business to business to everything (B2B2X) model—while still maintaining centralized oversight and robust security at scale. 

Agentic AI in action: From insight to autonomous operations

Faster time-to-market for new services

Traditionally, launching a new offering in telecom could take upward of 50 weeks, hindered by lengthy approvals, hardware provisioning, and siloed systems. In a cloud-native environment, operators can test, iterate, and deploy new products—like on-demand network slicing or advanced IoT bundles—in days or even hours. This speed is a game changer for operators transitioning from ‘telcos’ to ‘tech-cos,’ where continuous experimentation and rapid scaling of successful pilots are essential to staying competitive. Coupled with agentic AI that autonomously manages tasks, cloud-based OSS and BSS ensures you don’t just move faster—you move smarter. Leading telecoms are already laying the groundwork for agentic AI by adopting:

  • Predictive analytics for network health: For instance, AI-powered anomaly detection can preempt equipment failures, but true autonomy means the system itself orders the replacement part, dispatches a technician, and reroutes traffic in the meantime—all driven by integrated data across OSS and field service management. 
  • Proactive policy and billing: In a unified data environment, usage spikes or new IoT device activations can trigger dynamic policy updates in real time—while simultaneously adjusting billing parameters. This end-to-end automation requires that the network layer (OSS) and the revenue layer (BSS) share data instantly and accurately. 
A diagram of a company

Why run OSS on the public cloud?

As service catalogs explode and customer demands evolve more rapidly, operators need elastic, scalable infrastructure to shorten time-to-market and accommodate fluctuating loads. Public cloud delivers on-demand compute and storage, reducing capital expenses and enabling rapid innovation with built-in AI and machine learning services. Moreover, the global reach and reliability of platforms such as Microsoft Azure allow telecoms to replicate, secure, and manage their OSS across regions far more easily than traditional on-premises setups. By shifting OSS to a cloud-native model, operators can pivot from lengthy, monolithic upgrade cycles to nimble, iterative releases—critical for accelerating 5G and 6G services, IoT offerings, and B2B2X monetization scenarios.

Self-optimizing networks and beyond

While self-optimizing networks (SON) currently manages aspects of radio access networks, next-generation AI solutions extend self-optimization to the entire telecom domain. Microsoft Project Janus is an early example of how real-time AI-powered telemetry can proactively detect network anomalies, predict service degradations, and dynamically optimize network resources—laying the foundation for fully autonomous network operations. Telefónica España, for example, leveraged Azure AI and machine learning to achieve significant improvements in network performance and efficiency. By incorporating AI and big data technologies, Telefónica España is developing more intelligent networks capable of self-optimization and adaptation. This intelligence allows for a reduction in time to market for new solutions, enabling the company to swiftly implement innovations that enhance network performance and customer satisfaction. With advanced generative AI, AI-powered instructions can autonomously fine-tune network configurations, adapt capacity, and realign resources based on live traffic patterns. This orchestration is feasible only when AI has an enterprise-wide view of network, business, and operational data.

Embracing open standards and ecosystem collaboration

Just as critical as data consolidation is ensuring interoperability and flexibility. Many telecoms are turning to TM Forum’s Open APIs and adopting Open Digital Architecture (ODA) principles. These frameworks reduce vendor lock-in, streamline data exchange, and allow AI solutions to operate across heterogeneous environments. 

For example, TM Forum’s collaboration with Microsoft has accelerated the adoption of carrier-grade, open-source ODA canvases. By aligning Azure’s robust cloud capabilities with ODA standards, operators are now better equipped to innovate rapidly, simplify complex integrations, and significantly reduce the operational hurdles associated with legacy systems.

Microsoft plays a pivotal role in supporting these open standards, providing a cloud-native, modular approach fully aligned with ODA. A practical illustration is Sure Telecom’s adoption of Azure, where leveraging Microsoft’s open API framework allowed them to consolidate disparate data sources and achieve enhanced customer insights and operational efficiency. Microsoft’s platform delivers out-of-the-box integrations and open APIs that empower operators to harness AI-powered analytics and intelligent automation workflows, minimizing friction traditionally encountered during legacy system modernization. 

Achieving scale with cloud-native AI

A robust, cloud-native foundation is essential for scaling AI across complex telecommunication environments. Containerized microservices, DevOps practices, and serverless compute reduce operational overhead, allowing teams to focus on innovating rather than managing infrastructure. Within such environments: 

  • Azure AI services streamlines the training, deployment, and monitoring of AI models across OSS and BSS workloads. 
  • Microsoft Fabric fosters seamless data ingestion, orchestration, and transformation—critical for building that unified data estate necessary for agentic AI. 

By converging data and AI workloads in the cloud, telecoms can more quickly test and deploy innovative services that leverage advanced analytics for both operational efficiency and new revenue streams.

In addition to the operational and technical upsides, running on public cloud offers a more predictable and flexible cost model. Instead of large capital expenditures tied to peak capacity, operators pay only for what they consume. This shift in economics not only aligns with sporadic traffic spikes—common in modern usage-based and event-driven architectures—but also frees up budget to invest in strategic AI initiatives. By reducing hardware overhead, maintenance, and upgrade costs, telecoms can reinvest in higher-value activities such as AI-powered product innovation and partner ecosystem growth. 

Microsoft’s unique value: Building a telecom foundation for agentic AI

Microsoft combines a partner-centric approach with end-to-end technology solutions—bringing actionable capabilities to telecoms that want to realize AI-powered OSS and BSS at scale.

Key value streams include: 

  1. Telecom-specific cloud and data services: Telecom-optimized solutions from Microsoft and its partners help unify network, operational, and customer data into a single source of truth. 
  2. First-party AI agents: Microsoft’s growing suite of autonomous agents, such as those integrated within Dynamics 365, automate complex business processes—enhancing efficiency and decision-making across various telecom operations. 
  3. Alignment with industry standards: Microsoft’s active support for TM Forum and ODA ensures an open, interoperable environment. Operators can adopt AI without overhauling existing infrastructure or incurring vendor lock-in. 
  4. Security and compliance: As AI-powered automations become central to business functions, Microsoft provides enterprise-grade security and governance—critical for protecting sensitive network and customer data. 
  5. Partner ecosystem: Collaborations with leading vendors—such as Amdocs, CSG, Blue Planet, ServiceNow, Netcracker, and system integrators—create end-to-end workflows that accelerate modernization and reduce complexity. Through these partnerships, Microsoft’s AI tools seamlessly integrate with telecom-specific applications.

Positioning for revenue impact and the autonomous future

When OSS and BSS data is unified and AI-powered processes take over routine tasks, telecoms can prioritize innovation that directly impacts the bottom line. Whether rolling out new network services or offering real-time network slicing for enterprise customers, the ability to act on consolidated data in an autonomous fashion sets operators apart in a hyper-competitive market.

Short-term gains include faster time-to-market for new services, reduced operational costs, and improved customer experiences. Longer term, fully autonomous, self-healing networks that optimize themselves and require minimal manual intervention, unlock new revenue streams through AI-powered insights. Project Janus is already demonstrating this shift—showcasing how AI-powered network intelligence moves beyond predictive analytics into autonomous, self-optimizing operations that reduce operational overhead and ensure peak performance with minimal human intervention.

Project Janus demonstrates how AI-powered network intelligence can move beyond predictive analytics into autonomous, self-optimizing networks—reducing operational overhead and ensuring peak performance with minimal human intervention. 

Ready to transform your operations?

The industry is moving beyond point solutions toward a future where agentic AI and unified data estates power autonomous operations. For telecom leaders, now is the time to ensure OSS and BSS modernization strategies align with open standards, prioritize data consolidation, and prepare for the emergence of fully autonomous networks.

Microsoft and its partners are here to guide you on this journey—from building robust cloud-native foundations and consolidating your data estate to delivering intelligent, revenue-focused transformations across OSS and BSS. By embracing this approach today, you’ll ensure your operations not only keep pace with evolving market demands but lead the next era of telecommunications innovation. 

Learn more about our AI and generative AI solutions for telecommunications and discover how we can help you lay the groundwork for the agentic AI revolution—starting with your most strategic asset: your data.

The post The transformative impact of AI and generative AI on OSS and BSS in telecommunications appeared first on Microsoft Industry Blogs.


Source: Microsoft Industry Blog