Manufacturers have experienced significant volatility across global markets for discrete products over the last five years, with shifting customer demands, supply chain disruptions (through both natural and geopolitical events) coupled with the rapid acceptance and adoption of new technologies, including generative AI.
Manufacturers face existential challenges around several key and often conflicting goals; the need to increase revenue whilst at the same time reducing costs across the value chain—spanning engineering, manufacturing, and supply chains, starting with product design and engineering. These challenges have impacted everything from product requirements and capabilities to product development all the way to sourcing and production. A recent IDC report highlighted how for product managers, investing more in engineering and research and development (R&D) correlates with lower cost of goods sold (COGS) and higher revenue growth for manufacturers, suggesting that investments in product engineering investments drive financial success.1
industrial transformation in the era of ai
As product complexity and connectivity has continued to increase, engineers’ roles have become multi-disciplinary, requiring interaction with various data sources and tools, such as product lifecycle management (PLM), computer-aided design (CAD), computer-aided manufacturing (CAM), application lifecycle management (ALM) for software requirements, and computer-aided engineering (CAE). In addition to manufacturability, engineers need to incorporate aspects such as sustainability, regulatory compliance, quality, materials, and supplier and supply chain considerations much earlier in the product design process. The many lines of software code now prevalent in physical products and the growth in software requirements, also pressures traditional manufacturing information technology (IT) to support a proliferation of software tools, data, and infrastructure.
Generative AI is transforming product engineering and R&D to enable manufacturers to realize these benefits:
Microsoft partners play a pivotal role in transforming product engineering and R&D by building industry-specific solutions that integrate data unification and contextualization capabilities with Microsoft technologies which, combined with the Microsoft Cloud, are revolutionizing engineering functions.
Product engineering and R&D involve handling many types and modalities of data, including CAD files, technical specifications, product data and configurations, requirements, and process data. Manufacturers commonly use a range of systems, including PLM, ALM, and enterprise resource planning (ERP) systems, to manage this complex data. These form a secure data foundation on which transformation of product engineering is built upon, and sensitive IP can be protected.
The following are examples where generative AI is helping to deliver value in a secure, engineering data foundation with AI on the Microsoft Cloud.
Engineers use a range of complex solutions in product engineering when producing product designs from CAD, CAM, and CAE applications. This also involves creating and using many different data types, from 3D CAD and CAM files, to CAE simulation datasets, documents, specifications, and various knowledge repositories.
The following are examples where customers and generative AI-powered partner solutions are helping to deliver value in accelerating product engineering and R&D with AI on the Microsoft Cloud:
The next stage in revolutionizing product engineering and R&D sees the addition of multi-agent AI systems that can orchestrate, collaborate, and scale across complex enterprise workloads, including product engineering solutions, supply chain, manufacturing execution systems, customer relationship management, field service, and enterprise resource planning.
Microsoft, along with partners like PTC, Autodesk, and Aras, believe that digital threads are becoming a reality for industrial customers due to unified data foundations and generative AI. Unified data foundations make data usable by securely sourcing it from various systems and automating contextualization. Generative AI agents use this data to provide insights and take actions, unlocking numerous use cases across the manufacturing value chain, including product engineering, all through unified data foundations and generative AI.
The following are several such examples of innovations that are fueling the emergence and promise of AI-powered digital threads:
By using Microsoft Cloud for Manufacturing and AI-powered solutions from our partner ecosystem, manufacturers can securely unlock new levels of impact. The integration of AI-powered solutions and AI agents unlocks innovation, reduces costs and improves operational efficiencies, meaning manufacturers are better equipped to navigate challenges and seize opportunities.
Learn more about Microsoft Cloud for Manufacturing and Microsoft for automotive, and how companies are using Microsoft AI capabilities in Microsoft AI in Action.
Learn more about the unique use cases and solutions driving innovation in product engineering and R&D from our presence at Hannover Messe 2025.
Drive innovation with an AI-powered digital thread
The post Shaping the future of product engineering and research and development with generative AI appeared first on Microsoft Industry Blogs.
Source: Microsoft Industry Blog